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Abstract: Despite decades of intensive research, NHL (non-Hodgkin lymphoma) still remains poorly understood and is largely incurable. 
Recent molecular studies suggest that genomic variants measured with SNPs (single nucleotide polymorphisms) in genes may have 
additional predictive power for NHL prognosis beyond clinical risk factors. We analyzed a genetic association study. The prognostic 
cohort consisted of 346 patients, among whom 138 had DLBCL (diffuse large B-cell lymphoma) and 101 had FL (follicular lymphoma). 
For DLBCL, we analyzed 1229 SNPs which represented 122 KEGG pathways. For FL, we analyzed 1228 SNPs which represented 
122 KEGG pathways. Unlike in existing studies, we targeted at identifying pathways with significant additional predictive power 
beyond clinical factors. In addition, we accounted for the joint effects of multiple SNPs within pathways, whereas some existing stud-
ies drew pathway-level conclusions based on separate analysis of individual SNPs. For DLBCL, we identified four pathways, which, 
combined with the clinical factors, had medians of the prediction logrank statistics as 2.535, 2.220, 2.094, 2.453, and 2.512, respec-
tively. As a comparison, the clinical factors had a median of the prediction logrank statistics around 0.552. For FL, we identified two 
pathways, which, combined with the clinical factors, had medians of the prediction logrank statistics as 4.320 and 3.532, respectively. 
As a comparison, the clinical factors had a median of the prediction logrank statistics around 1.212. For NHL overall, we identified 
three pathways, which, combined with the clinical factors, had medians of the prediction logrank statistics as 5.722, 5.314, and 5.441, 
respective. As a comparison, the clinical factors had a median of the prediction logrank statistics around 4.411. The identified pathways 
have sound biological bases. In addition, they are different from those identified using existing approaches. They may provide further 
insights into the biological mechanisms underlying the prognosis of NHL.
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Introduction
NHL (non-Hodgkin Lymphoma) represents a hetero
geneous group of lymphocytic disorders ranging in 
aggressiveness from very indolent cellular prolifera-
tion to highly aggressive and rapidly proliferative 
processes. Although it is the fifth cause of cancer inci-
dence and mortality in the US, NHL remains poorly 
understood and is largely incurable.1 In clinic, estab-
lished adverse prognostic factors for NHL include 
older age at diagnosis, higher tumor stage, poorer 
performance score, extranodal involvement, above-
normal lactate dehydrogenase, and B-symptom 
presence.2,3 Recent molecular studies suggest that, 
beyond clinical and environmental factors, the prog-
nosis of NHL is also affected by genomic variations 
which can be measured using SNPs (single nucleotide 
polymorphisms).4–6 In this article, when referring to 
“prognosis”, we limit ourselves to overall survival. 
Disease-free and other types of survival have differ-
ent patterns and different genomic bases and should 
be investigated separately.

The ultimate goal of NHL genomic studies is to 
identify markers that can be used to construct pre-
dictive models for prognosis. In this article, we ana-
lyze a genetic association study on NHL prognosis. 
Our particular goal is to identify gene pathways with 
significant additional predictive power beyond clini-
cal factors. More specifically, consider two types of 
models. The first is constructed using both gene path-
ways and clinical risk factors, whereas the second is 
constructed using only clinical risk factors. With a 
specific pathway, if the predictive power of the first 
type of model is significantly larger than that of the 
second type of model, we conclude that this pathway 
has significant additional predictive power.

Although there are many existing statistical meth-
ods for the analysis of genetic association data, 
they are not directly applicable to our study, as our 
goal is fundamentally different from that in existing 
studies. More specifically, many existing methods 
are single-marker based and consist of the following 
steps. First, for each SNP, a model (eg, Cox propor-
tional hazards model) with the survival outcome as 
response and “SNP + clinical risk factors” as cova-
riates is constructed. Second, for each SNP, its esti-
mation significance, measured with the P-value from 
(eg,) the likelihood ratio test, is computed. Third, 
SNPs with P-values below a threshold are declared 

as significant. These methods analyze one SNP at a 
time, that is, the marginal effects of SNPs. They are 
proper for simple Mendelian diseases. Lymphoma 
is a multiple-factor complex disease, resulting from 
the interplay of multiple genetic and environmental 
factors. Single-marker analysis may miss SNPs with 
weak marginal but strong joint effects. In addition, 
single-marker analysis cannot effectively incorpo-
rate prior biological information of genes, which has 
been accumulated over time from a large number 
of independent studies.7 Our analysis is pathway-
based. Pathway is a way of describing the interplay 
among genes, where pathways are composed of mul-
tiple genes (SNPs) with related biological functions. 
“Pathway analysis is a promising tool to identify the 
mechanisms that underlie diseases, adaptive physio-
logical compensatory responses, and new avenues for 
investigation”.8 Compared with single marker-based 
analysis, pathway-based analysis has led to results 
that are more reproducible and more interpretable.7,9,10 
Our pathway analysis approach is also fundamen-
tally different from existing ones. More specifically, 
many existing pathway analysis methods analyze one 
SNP at a time and then combine SNP-level analyses 
to make pathway-level conclusions. Such methods, 
including the GSEA (gene set enrichment analysis)10,11 
and maxmean approach,12 are suitable for answering 
“which pathways are enriched with SNPs marginally 
associated with disease”. But they cannot quantify 
the joint effects or coordination of multiple SNPs 
within the same pathways. In addition, many path-
way analysis methods focus on the model estimation 
aspect as opposed to prediction. To further elaborate, 
we consider a Cox model for the survival time T. This 
model postulates that λ(t | X,Z) = λ0(t) exp(αX + βZ), 
where λ(t | X,Z) is the conditional hazard function, 
λ0(t) is the unknown baseline hazard, X and Z are the 
clinical factors and SNPs respectively, and α and β 
are the unknown regression coefficients. It is possible 
to construct an example where the estimate of β is 
statistically significant and the magnitude of αX is 
much larger than that of βZ. Existing methods focus 
on the significance of model estimation and may con-
clude the significance of SNPs. However, since the 
magnitude of βZ is relatively small, predictions with 
and without SNPs may have ignorable differences. 
That is, adding the SNPs to the model with clinical 
factors does not significantly improve prediction. 
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Thus, we may conclude the insignificance of SNPs in 
terms of additional predictive power.

In this article, we study the genomic basis of 
NHL prognosis. As pathway analysis is conducted, 
this study may provide additional insights beyond 
individual-marker based analysis. Unlike in existing 
studies, we target the predictive power directly. Thus, 
the models constructed using identified pathways 
are expected to have better prediction performance 
than those using pathways identified with alternative 
approaches.

Methods
Association study of NHL prognosis
Study design
We described the patient selection procedure in 
Figure 1. In this study, cases were histologically con-
firmed, incident NHL patients diagnosed in Connecti-
cut between 1996 and 2000. Subjects were restricted 
to women who were 21–84 years old at diagnosis, 
had no previous diagnosis of cancer except non-
melanoma skin cancer, and were alive at the time of 

interview. This study was limited to female patients 
only, as men and women may have different etiology 
factors and this restriction was to prevent confound-
ing by gender. Cases were identified through the Yale 
Comprehensive Cancer Center’s Rapid Case Ascer-
tainment Shared Resource (RCA), a component of 
the Connecticut Tumor Registry (CTR). All licensed 
hospitals and clinical laboratories in Connecticut are 
required by public health legislation to report diag-
nosed cancer cases. Information on cases identified 
in the field is sent regularly to RCA, where the case 
information is entered, verified, and screened against 
the CTR database. 1122 potential cases were iden-
tified. Among them, 167 died before they could be 
interviewed and 123 were excluded because of doc-
tor refusal, previous diagnosis of cancer, or inability 
to speak English. Out of the 832 eligible cases, 601 
completed an in-person interview. Of the 601 cases, 
13 could not be identified in the CTR system, and 
13 were found to have a history of cancer prior to 
the diagnosis of NHL, leading to a prognostic cohort 
of 575  NHL patients. Among the 575 patients, 

1122 potential female cases
(167 died before interview; 123 excluded)

832 eligible cases

601 completed interview (13 could not be
identified; 13 had cancer history)

575 NHL patients, among whom 496
had SNP measurements available

155 DLBCL, 117 FL, 57 CLL/SLL, 34 
MZBL, 37 T/NK-cell, 96 other

[cohort 1, size 496]

138 DLBCL, 101 FL, 50 CLL/SLL, 29 
MZBL, 28 T/NK-cell [cohort 2, size 346] 

Remove subjects with >20% SNPs missing 

DLBCL: 1730 SNPs; FL: 1729 SNPs 

DLBCL: 122 pathways (1229 SNPs)
FL: 122 pathways (1228 SNPs)

A total of 1764 SNPs 

Find pathway information 

Remove SNPs with >20% missing 

Figure 1. Flowcharts of patient and SNP selection.
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496 donated either blood or buccal cell samples. All 
cases were histologically confirmed by two study 
pathologists and classified into NHL subtypes accord-
ing to the World Health Organization classification 
system. Specifically, 155 had diffuse large B-cell 
lymphoma (DLBCL), 117 had Follicular lymphoma 
(FL), 57 had chronic lymphocytic leukemia/small 
lymphocytic lymphoma (CLL/SLL), 34 had marginal 
zone B-cell lymphoma (MZBL), 37 had T/NK-cell 
lymphoma, and 96 had other subtypes. Vital status 
was abstracted from the CTR in 2008. Written con-
sents were obtained from all patients. The study was 
approved by the Human Subjects Research Review 
Committee at Yale University and the Connecticut 
Department of Health.

DNA extraction and genotyping was performed 
at the Core Genotyping Facility of National Can-
cer Institute.13 DNA was extracted from blood clots 
using the Puregene Autopure DNA extraction kits 
(Gentra Systems, Minneapolis, MN) and from buccal 
cell samples using the phenol-chloroform extraction 
methods.14 A total of 1462 tag SNPs from 210 can-
didate genes related to immune response were geno-
typed using a custom-designed GoldenGate assay.15 
The tag SNPs were chosen from the designable set of 
common SNPs (minor allele frequency .5%) geno-
typed in the Caucasian (CEU) population sample of 
the HapMap Project (Data Release 20/Phase II, NCBI 
Build 35 assembly, dpSNPb125) using the software 
Tagzilla.16 For each gene, SNPs within the region 
20kb 5′ of the ATG-translation initiation codon and 
10kb 3′ of the end of the last exon were binned using 
a binning threshold of r2 .  0.80. When there were 
multiple transcripts available for genes, the primary 
transcript was assessed. Duplicate samples and repli-
cate samples were genotyped for quality control and 
blinded to laboratory personnel. The concordance 
rates were 99%–100% for all assays. We also included 
302 SNPs in 143 candidate genes previously geno-
typed by Taqman assay.17 There were a total of 1764 
SNPs measured. The list of SNPs and genes profiled 
is provided in Appendix 1.

Data processing
We removed patients with more than 20% SNPs miss-
ing and then removed SNPs with more than 20% mea-
surements missing. The genotyping data was missing 

for the following reasons: the amount of DNA was too 
low, samples failed to amplify, samples amplified but 
their genotype could not be determined due to ambig-
uous results, or the DNA quality was poor. We then 
imputed missing SNP measurements.18 As shown in 
Figure 1, for DLBCL, 138 patients passed this screen-
ing. Among them, 61 died, with survival times ranging 
from 0.47 to 10.46 years (mean = 4.16 years). For the 
77 censored patients, the follow up time ranged from 
5.58 to 11.45 years (mean =  9.08 years). 1730 SNPs 
passed the screening. For FL, 101 patients passed the 
screening. Among them, 33 died, with survival time 
ranging from 0.91 to 10.23 years (mean = 4.64 years). 
For the 68 censored patients, the follow up time 
ranged from 4.96 to 11.39 years (mean = 8.83 years). 
1729 SNPs passed the screening.

The following demographic and clinical factors 
were also measured: age (rescaled to mean 0 and vari-
ance 1  in analysis for better comparability among 
covariates), education (level 1 = high school or less; 
level 2  =  some college; level 3  =  college gradu-
ate or more), tumor stage (level 1–4 and unknown), 
B-symptom presence (no; yes; unknown), and initial 
treatment (none; radiation only; chemotherapy-based 
therapy; other). They included all widely accepted 
prognostic factors.19 Summary statistics for the whole 
cohort and selected subsets were presented in Table 1.

Pathway construction
For each gene, we searched KEGG20 for available 
pathway information. For DLBCL, there were 1229 
SNPs belonging to 122 KEGG pathways, with pathway 
sizes ranging from 1 to 240 with median 12. For FL, 
there were 1228 SNPs belonging to 122 KEGG path-
ways, with pathway sizes ranging from 1 to 240 with 
median 12.

Statistical methods
Detecting pathways with significant additional pre-
dictive power involves comparing models with and 
without SNPs. When measuring the predictive power, 
ideally, independent training and testing datasets are 
needed. As we do not have access to independent 
data under comparable settings, we use random par-
tition to generate training and testing datasets. The 
logrank statistic is chosen as the measure of predic-
tive power.21 To avoid an extreme partition, multiple 
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partitions are conducted, leading to the distribution 
of the prediction logrank statistics. Finally, the FDR 
(false discovery rate) approach is used to control for 
multiple comparisons.

Algorithm
1.	 Data processing. Measurements with severe miss-

ingness are removed from analysis. Measurements 
with light missingness are imputed. In this study, 
20% missing rate is used as the cutoff.

2.	 Pathway construction using databases such as 
KEGG. SNPs without pathway information are 
removed from downstream analysis.

3.	 For each pathway
a.	 Compute the prediction index PIC+G, which 

measures the combined predictive power of 
clinical factors and SNPs. Here the subscript 
“C+G” stands for “clinical + genomic”.

b.	 Compute the prediction index PIC, which 
measures the predictive power of clinical fac-
tors alone. Here the subscript “C” stands for 
“clinical”.

c.	 Compare PIC+G with PIC, evaluate the signifi-
cance of difference, and quantify the additional 
predictive power provided by SNPs.

4.	 Employ the FDR approach.

In the following subsections, we provide detailed 
descriptions of Steps 3 and 4.

Quantification of additional predictive 
power of a single pathway
Consider a pathway with m SNPs. Denote Z as the 
length-m vector of measurements. Denote X as 
the length-l vector of clinical factors. Denote T and C 
as the death and censoring time. Under right censor-
ing, one observes (U = min(T,C), ∆ = I(T # C), X,Z. 
Consider the following Cox proportional hazards 
models:

(M1): λ(t | X,Z) = λ0(t) exp(αX + βZ), and
(M2): λ(t | X,Z) = λ0(t) exp(αX).

The Cox model has been extensively adopted in 
survival analysis. It is semiparametric and can be 
much more flexible than parametric models. A unique 
advantage of the Cox model is that the profile likeli-
hood function does not involve the baseline hazard. 
Thus, the estimation only involves maximization 
over a small number of parametric parameters. Model 
(M1) consists of both clinical and genomic factors, 
whereas model (M2) consists of clinical factors only. 
In “classic” NHL prognosis studies, genomic factors 
are ignored and (M2) is adopted. In recent genomic 
studies, both types of risk factors are considered 
and model (M1) is the preferred model. Statistically 
speaking, the validity of models depends on the 
unknown underlying data generating mechanisms. 
There is a vast amount of research on the statistical 

Table 1. Patient characteristics. 

Variables Cohort 1 
(n = 496)

Cohort 2 
(n = 346)

DLBCL  
(n = 138)

FL  
(n = 101)

Age 61.62 61.14 59.36 60.02
Education Level 1

Level 2
Level 3

206
168
122

135
120
91

53
54
31

35
36
30

Tumor stage Level 1
Level 2
Level 3
Level 4
Unknown

238
61
28
158
11

177
42
23
98
6

72
23
9
31
3

55
12
10
23
1

B-symptom presence No
Yes
Unknown

71
29
396

51
20
275

28
12
98

13
4
84

Initial treatment None
Radiation 
Chemotherapy
Other

173
63
253
7

123
52
167
4

21
18
99
0

44
19
38
0

Note: Age: mean; other variables: count.
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properties of Cox models and their estimates, and will 
not be repeated here. Comparing the predictive power 
of (M1) versus that of (M2) can reveal the additional 
predictive power of SNPs.

Assume n iid observations (Ui, δi, Xi, Zi), 
i =  1 … n. Denote rj =  {k: Uk $ Uj} as the at-risk 
set at Uj. Under (M1), the log-partial likelihood func-
tion is Rn(α,β ) = Σn

j=1 δ j{(α Xj + b Zj) - log(Σk∈rj 
exp 

(α Xk + b Zk))}. In a similar manner, we can define the 
log-partial likelihood function Rn(α) under (M2).

In association studies, the sizes of some pathways 
may be comparable to or even larger than the sample 
sizes. Direct maximization of the likelihood functions 
may lead to unreliable maximizers. We propose using 
the ridge penalization to regularize the estimates.22 
Under (M1), the ridge estimates of α,β are

2 2 2

1 1

ˆˆ( , ) arg max ( , ) ,
l m

n n j j
j j

Rα β α β λ α β
= =

   = - +  
   
∑ ∑

where λn is the tuning parameter, and αj, βj are the 
j-th components of α,β, respectively. We use the R 
package penalized to compute the ridge estimates.

For a specific pathway, its additional predictive 
power is evaluated as follows:

1.	 Randomly partition data into a training set and a 
testing set with sizes 3:1;

2.	 Under (M1), compute the ridge estimate of α,β 
using the training set only. λn is selected using 
3-fold cross validation. For subjects in the testing 
set, compute the predictive risk scores ˆˆ .X Zα β+  
Dichotomize the scores at the median and create 
two risk groups. Compute the logrank statistic that 
measures the difference of survival between the 
two groups;

3.	 Repeat Step 2, with (M1) replaced by (M2);
4.	 Repeat Steps 1–3 B (eg, 200) times;
5.	 PIC+G consists of the B logrank statistics generated 

under (M1); PIC consists of the B logrank statistics 
generated under (M2);

6.	 Conduct a paired Wilcoxon test of PIC+G versus PIC. 
The resulted P-value quantifies the significance of 
additional predictive power.

In Step 1, we randomly partition the data into train-
ing and testing sets. The specific way of partitioning 
makes the sizes of the testing set and each piece of the 

cross validation set equal. In Step 2, we use the ridge 
approach to estimate the regression coefficients under 
(M1) and then quantify the combined predictive power 
of clinical and genomic factors. The logrank statistic 
has been extensively used as a measure of predic-
tive power.21,23 The significance of logrank statistics 
generated in Step 2 can be easily obtained. However, 
the significance of these logrank statistics does not 
indicate a significant contribution of the SNPs. It 
is possible that the significance simply comes from 
the predictive power of clinical factors. Thus, to dis-
criminate the predictive power of SNPs from that of 
clinical factors, we compute PIC in Step 3. In Step 4, 
instead of a single logrank statistic, we generate its 
distribution via multiple partitions. By doing so, we 
can avoid the risk of an extreme partition. In Step 6, 
if the comparison of PIC+G versus PIC yields a signifi-
cant result, we conclude that SNPs within this path-
way have significant additional predictive power.

Representative plots of PIC+G and PIC are shown in 
Figure 2. For FL, two pathways are used as examples: 
the Endometrial cancer pathway which has significant 
additional predictive power, and the Glycerolipid 
metabolism pathway which does not. For a better 
view, only the estimated densities of the logrank sta-
tistics are plotted. It is easy to see that, for a predic-
tive pathway, the estimated densities of PIC + G and PIC 
are well separated. However, for a pathway without 
predictive power, the estimated densities are almost 
completely overlapped.

Controlling the FDR
Denote N as the number of pathways, and p1 … pN as 
the P-values generated from the Wilcoxon tests. a) Set 

0 5 10

Logrank statistic

D
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00
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20

0.
25

0.
30

0.
35

Figure 2. Densities of PIC (blue dashed line) and PIC+G for a predictive 
pathway (black dash-dotted line) and a non-predictive pathway (green 
solid line).
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the target FDR to q  =  0.2; b) Order the P-values 
p(1)  #  …  #  p(N ); c) Let r be the largest i such 
that p(i) #  i/N × q/c(N ); d) Pathways corresponding 
to p(1) … p(r) are concluded as having significant addi-
tional predictive power. Different pathways may share 
common genes/SNPs. To account for the possible 
correlations among P-values caused by overlapping 
pathways, we set c N i

i
N( ) /=
=∑ 1
1

.24

Remarks
(M2) is a submodel of (M1). A seemingly natural 
way of discriminating the two models is to con-
duct hypothesis testing within the ANOVA frame-
work. However, such an approach still quantifies 
model estimation as opposed to prediction. When 
the number of covariates is much smaller than the 
sample size, estimation can be a reasonable proxy of 
prediction. Under the present setup, with the number 
of covariates considerably large, it is not clear how 
well estimation can represent prediction. Thus, we 
choose the proposed approach and assess prediction 
directly.

The proposed approach shares some similari-
ties with but differs significantly from the one in.25 
In this study, we analyze association data, which is 
binary and represents two genotypes. In contrast, Ma 
and Kosorok25 analyzes continuous microarray gene 
expression measurements. We are interested in quanti-
fying the additional predictive power of genomic fac-
tors beyond clinical factors, whereas in,25 the interest 
lies in quantifying the absolute predictive power of 
all factors. More importantly, since we are only inter-
ested in generating consistent estimates and using 
them for predictions, we use the ridge penalization. 
In contrast, Ma and Kosorok25 is interested in vari-
able selection. Thus, the bridge penalization, which 
is capable of selection but has significantly higher 
computational cost, is adopted.

We describe the proposed method for data with a 
censored survival outcome. It can be extended to other 
types of outcomes. Specifically, with continuous out-
comes, the Cox model can be replaced with a linear 
model and the logrank statistic can be replaced with 
the mean squared error. With categorical outcomes, 
generalized linear models and the classification error 
can be used. Once statistical models and prediction 
statistics are determined, the proposed method can be 
applied. In our prognosis models, additive covariate 

effects are assumed. In principal, more complicated 
models, for example those including interaction 
terms, can be adopted. We note that unlike single-
marker analysis, the proposed method investigates all 
SNPs within the same pathways using a single model. 
Thus, considering complicated models may dramati-
cally increase the number of unknown parameters and 
reduce power. We use the Wilcoxon test to compare 
the prediction indexes. This test is nonparametric and 
relies on weak assumptions. We have experimented 
with other tests and concluded the same significant 
pathways.

Results
To better understand NHL prognosis, we first fit Cox 
proportional hazards models using only the clini-
cal risk factors. Detailed results were presented in 
Appendix 2. The main findings were consistent with 
the literature.3,19

Pathway identification
We focused on DLBCL and FL due to a sample size 
consideration. We also analyzed all subtypes com-
bined to investigate if there are pathways predic-
tive for NHL overall. The identified pathways were 
shown in Table 2. We found that incorporating SNPs 
could increase the predictive power by a consider-
able amount. Specifically, for DLBCL, PIC+G for the 
identified pathways had medians 2.535, 2.220, 2.094, 
2.453, and 2.512, respectively. In contrast, PIC had 
medians around 0.552; For FL, PIC+G for the identi-
fied pathways had medians 4.320 and 3.532, respec-
tively. In contrast, PIC s had medians around 1.212; 
For NHL overall, PIC+G s for the identified pathways 
had medians 5.722, 5.314, and 5.441, respectively. 
In contrast, PIC s had medians around 4.411.

Biological implications
Given the limited genetic association studies on NHL 
survival, there are very few reproduced findings for 
most of the positive SNPs we identified. However, 
the links between these SNPs and NHL risk by pre-
vious etiology studies confirmed their biological sig-
nificance in lymphomagenesis.

Five metabolic pathways were found to be pre-
dictive: selenoamino acid metabolism pathway and 
glycine, serine and threonine metabolism pathway 
for DLBCL, cytochrome P450 drug metabolism 
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pathway, other enzymes drug metabolism pathway, 
and caffeine metabolism pathway for NHL overall. 
Metabolic pathway enzymes are involved in activa-
tion and detoxification of environmental carcinogens 
as well as drug metabolism, and the related genes 
may play important roles in the susceptibility to toxic 
effects of chemicals and may also influence tumor 
response to drugs used in NHL treatments. Studies 
have linked the risk of NHL and its subtypes with 
genetic variations in various metabolic pathways such 
as BHMT, CBS, SHMT1,26 CYP2C9,27 CYP2E1,28 
GSTP1,29 GSTT1,29–31 NAT1 and NAT2.32 Moreover, 
low expressions of GPX1 are associated with better 
survival of DLBCL patients,33 and genetic variations 
in CYP2E1, GSTP1, GSTT1 and NAT1 are associated 
with NHL survival.19 In line with the previous studies, 
our results from this pathway analysis suggested that 
metabolic pathway genes are one of the most influen-
tial ones that affect lymphoma prognosis.

The type II diabetes mellitus pathway and the 
insulin signaling pathway were found to be predictive 
for DLBCL survival. With their immune functions 
altered, people with diabetes are more prone to NHL. 
A recent meta-analysis of five cohort studies and ten 
case-controls studies identified an association between 
diabetes and increased risk of NHL.34 Moreover, 
studies have shown that insulin and IGF-I play a key 
role in cell proliferation, apoptosis, and metastasis, 
thus may be actively involved in tumor formation and 
progression.35 Studies have found that SOCS1 muta-
tion is frequent in lymphoma cells, and SOCS3 over-
expression is associated with decreased survival of FL 
patients.36 TNF is one of the most noteworthy genes 

to date, whose variations are reported as NHL risk 
alleles. Several studies, including a recent pooled-
analysis of nine case-control studies by InterLymph 
Consortium, have reported that mutations in TNF, 
especially TNF-308G . A, are associated with NHL 
risk.5,6,37 Moreover, TNF-308G . A has been identi-
fied as a predictor of survival in DLBCL patients.38

The TGF-beta signaling pathway was found to be 
predictive for DLBCL survival. TGF-beta, a secreted 
multifunctional cytokine, is one of the few known 
classes of proteins that can inhibit cell growth. It nor-
mally functions as a tumor suppressor during early 
stages of tumorigenesis, whereas at later stages the 
genetic and epigenetic events convert TGF-beta to a 
tumor promoter aiding in cell growth, invasion and 
metastasis.39 TGF-beta signaling pathway regulates a 
wide range of cellular processes including prolifera-
tion, differentiation, apoptosis, migration and cellular 
homeostasis. The knowledge of TGF-beta signaling 
pathway and cancer is evolving. To our knowledge, 
no SNP of TGF-beta signaling pathway genes except 
TNF has been associated with prognosis and survival 
of NHL. However, the high TGF-beta levels were 
identified as independent predictors of improved out-
come in FL patients,40 and MYC gene rearrangements 
were found to be associated with a poor prognosis in 
DLBCL patients.41

The endometrial cancer pathway was found to be 
predictive for FL survival. Studies have found that 
women with a diagnosis history of endometriosis are at 
an increased risk of NHL.42 In addition, there are strong 
evidences showing that all genes in this pathway play 
important roles in single or multiple stages of tumor 

Table 2. Pathways with additional predictive power.

Pathway Size P-value Gene 
DLBCL Selenoamino acid metabolism

Type II diabetes mellitus
Glycine, serine and threonine 
metabolism
TGF-beta signaling pathway
Insulin signaling pathway

4
19
7
 
13
15

0.000009
0.00012
0.00018 

0.00018
0.0013

CBS
SOCS1, SOCS2, SOCS3, SOCS4, TNF
BHMT, CBS, SHMT1 

CDKN2A, IFNG, MYC, TGFB1, TGFBR1, TNF
SOCS1, SOCS2, SOCS3, SOCS4

FL Endometrial cancer
Melanogenesis

10
5

0.00013
0.00002

CASP9, CCND1, MLH1, MYC, TP53, CTNNB1
MC1R, CTNNB1

All Drug metabolism—other enzymes
Drug metabolism—cytochrome P450
 
Caffeine metabolism

35
7
 
36

0.00024
0.00044
 
0.00056

NAT1, NAT2, XDH
CYP1A2, CYP2C9, CYP2E1, GSTM3, GSTP1, 
GSTT1
CYP1A2, NAT1, NAT2, XDH

Note: Size: number of SNPs within pathways; P-value: unadjusted P-values from Wilcoxon tests.
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growth and tumor progression. For example, CASP9 
encodes a member of caspase family which plays a 
central role in apoptosis; Mutations, amplification and 
overexpression of CCND1 alter cell cycle progression; 
MLH1 is involved in DNA repair and cell cycle; The 
protein encoded by MYC plays a role in cell cycle pro-
gression, apoptosis and cellular transformation; TP53 
regulates target genes that induce cell cycle arrest, 
apoptosis, senescence and DNA repair; and CTNNB1 
plays a role in tumor cell metastasis.43 Studies have 
observed associations between genetic variants in 
CASP9,17,44 CCND1 and MYC32 and risk of NHL over-
all and different subtypes. TP53 mutations are found to 
be predictive for poor survival in DLBCL and FL.45

In addition, the melanogenesis pathway was 
identified as predictive for FL survival. The consis-
tent observation of melanoma and NHL occurring 
in the same patients, the similar temporal trends of 
incidences of melanoma and NHL, and the observed 
association of UV radiation and NHL risk all strongly 
suggest a linkage between melanogenesis and 
lymphomagenesis.46,47

Alternative analysis
We also analyzed the data using the following alter-
native pathway-based approaches.

Gene set enrichment analysis
The GSEA is perhaps the most popular pathway anal-
ysis method.10,11 For each SNP, we fit a Cox model 
with the “clinical factors + SNP” as covariates and 
used the SNP’s standardized regression coefficient as 
the statistic. The remaining steps followed.10 We used 
the same FDR control as for the proposed approach. 
For DLBCL, the GSEA identified 53 pathways. The 
Selenoamino acid metabolism pathway, TGF-beta 
signaling pathway, and Insulin signaling pathway 
were identified. For FL, the GSEA identified 56 path-
ways but had no overlap with the proposed approach. 
For all subtypes combined, the GSEA identified 54 
pathways. The Drug metabolism-cytochrome P450 
pathway was identified.

Maxmean approach
This approach was proposed in.12 It shares similar 
spirits but differs from the GSEA. For DLBCL, FL, 
and NHL overall, the maxmean approach did not 
identify any significant pathways.

Global test
The global test was proposed in.48 For DLBCL 
and FL, this approach did not identify any signifi-
cant pathway. For NHL overall, 10 pathways were 
identified. However, there was no overlap with the 
pathways identified using the proposed approach.

Remarks
We compared PIC+G s of pathways identified using the 
GSEA and global test versus those not identified, and 
found no significant difference. That is, the pathways 
identified using those approaches do not have more 
predictive power than those not identified.

The above analysis showed the dramatic differ-
ences between the pathways identified using different 
approaches. Such differences are reasonable consid-
ering that the three alternative approaches focus on 
the estimation significance as opposed to predictive 
power. Similar phenomenon has been observed in.25 
Of note, there are many other alternative approaches. 
A complete comparison is almost impossible to 
achieve. Thus, we focused on the above three, which 
are perhaps more extensively used than other existing 
approaches.

Discussion
This study may have the following limitations. First, 
the prognosis study included only female NHL 
patients. This restriction was to avoid possible con-
founding by gender. In addition, all patients were 
recruited in Connecticut, a state in the northeast US. 
It is not clear whether the results can be generalized 
to male patients. There is a very small possibility that 
the results cannot be generalized to patients from 
other geographic locations. Second, in the profil-
ing, a candidate-gene approach (as opposed to whole 
genome scan) was adopted. Genes and SNPs profiled 
were manually selected. With a total of 1764 SNPs 
(333  genes), this study was not able to provide a 
full coverage of the genome. Particularly, the SNPs 
(genes) profiled might not sufficiently cover all path-
ways involved. A few pathways had a small number 
of SNPs. Additional whole-genome studies will be 
needed to identify more NHL susceptibility SNPs. 
Third, this study was also limited by the availability 
of data. In this study, patients were recruited in Con-
necticut during 1996 and 2000. The prognostic cohort 
analyzed consisted of 346 patients. Larger-scale, more 
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powerful studies will be needed to obtain more con-
clusive results. Fourth, the reliability of our analysis 
results might also be limited by the quality of data, 
including for example the low call rate. Fifth, the path-
way information was extracted from KEGG. It has 
been recognized that our knowledge of the biological 
functions of genes and their pathway information is 
still partial. The pathway information might be refined 
by using more databases such as BioCarta or updated 
in the future. Last, the results are obtained from the 
analysis of a single dataset. Independent validation 
studies, for example in vitro cell culture studies, are 
needed to further validate the identify pathways and 
understand their biological mechanisms.

Despite the aforementioned limitations, this study 
still has considerable merits. Our literature review 
suggested the scarcity of genetic association studies 
on NHL prognosis. The research on NHL genomic 
markers is still in the early exploration, as opposed 
to the late confirmation, stage. The pathways and 
SNPs identified in this study may contribute to our 
understanding of NHL and serve as basis for future 
confirmation studies.

Conclusion
NHL is largely incurable and its genetic basis is not 
well understood. This has motivated researchers to 
search for genetic variants that have additional predic-
tive power beyond clinical and demographic factors. 
In this study, pathway-based analysis is conducted. 
For DLBCL, FL and all subtypes combined, we 
employ a new approach and identify five, two, and 
three pathways with significant additional predictive 
power. We find that there are strong evidences of con-
nections between identified pathways, their genes and 
NHL prognosis. Although some identified genes have 
been previously discovered, this can be the first time 
they are identified in the context of pathway analysis. 
The identified pathways differ from those identi-
fied using alternative approaches, and may provide 
further insights into mechanisms underlying NHL 
prognosis.
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